EXERCISE – 15B

Q-3. In the given figure Congruent parts .

Sol:

Given that = AD = BC and AB = CD To prove = $\triangle ABD$ $\bigtriangleup \triangle CDB$ Proof : AD = BC (Given) AB = CD (Given) BD = BD (common) Hence By SSS $\triangle ABD$ $\bowtie \triangle CDB$ Congruent parts : AB $\bowtie CD$, AD $\bowtie CB$ and BD $\bowtie BD$ $\angle 1 = \angle 3$, $\angle 2 = \angle 4$ And $\angle A = \angle C$

Q-4. ABC is an isosceles ----- BD?

Sol:

Sol: a. Given : AB = AC and AD is the bisector of angle A.

To prove :
$$\triangle$$
 ABD \cong = \triangle ACD

Proof : AB = AC (Given)

angle BAD = angle CAD (AD is the bisector of angle A)

AD = AD (common)

Hence by SAS

b. Is $\angle ADB = 90^{\circ}$

Proof:

 $\angle ADB + \angle ADC = 180^{\circ}$ (Linear pair) $\angle ADB + \angle ADB = 180^{\circ}$ (By CPCT $\angle ADB = \angle ADC$) $2 \angle ADB = 180^{\circ}$

 $\triangle ADB = 180^{\circ} / 2 = 90^{\circ}$

c. Is D the mid point of BC ?

Sol: BD = DC (By CPCT)

Hence D is the mid part of BC.

Q- 5. \triangle EFG is isosceles . EF = EG and EH = FG and EH FG . Prove that angle F= angle G.

Sol : Given : EF = EG

EH__FG

To prove : angle F = angle G

Proof; EF = EG (Given)

EH = EH (Common)

$$\underline{/EHF} = \underline{/EHG} = 90^{\circ}$$
 (EH is perpendicular to FG)

So by RHS

 $\triangle \text{ EHF } \bigtriangleup \triangle \text{ EHG}$ $\Rightarrow \underline{/F} = \underline{/G} \text{ (By CPCT)}$ Hence proved.

Q-6. In the given figure ----- Prove that –

a.
$$\triangle$$
 ABD \cong \triangle ACD

Sol : a. Given : AB = AC and BD = DC

To prove : \triangle ABD $\bowtie \triangle$ ACD Proof : AB = AC (Given) BD = DC (Given)

$$AD = AD (common)$$

Hence by SSS

 $\triangle ABD \quad \blacksquare \quad \triangle ACD$ b. . $\triangle ADB = \triangle ADC = 90^{\circ}$ Proof : $\triangle ADB + \triangle ADC = 180^{\circ}$ (Linear pair) $\triangle ADB + \triangle ADB = 180^{\circ}$ (By CPCT $\triangle ADB = \triangle ADC$) $2\triangle ADB = 180^{\circ}$ $\triangle ADB = 180^{\circ} / 2 = 90^{\circ}$ Hence angle $ADB = angle ADC = 90^{\circ}$ c. angle B = angle C (By CPCT) d. angle BAD = angle CAD (By CPCT)

Q-7. In triangle PQR ----- Prove that PQ = PR

Sol : . Given : PS is the bisector of angle P so $\frac{1}{2} = \frac{2}{2}$

To prove : PQ = PR

Proof : $\frac{1}{2} = \frac{2}{2}$ (PS is the bisector of angle P)

angle $PSQ = angle PSR = 90^{\circ}$ (PS is perpendicular to QR)

PS = PS (common)

Hence by ASA

$$\triangle$$
 PQS 🞽 \triangle PRS

⇔

Hence proved

Q-8. In the given figure ----- Prove that CD = BC

Sol : Given : angle $B = angle D = 90^{\circ}$

AB = DE

To prove = CD = BC

Proof : angle $B = angle D = 90^{\circ}$ (Given)

AB = DE (Given)

Angle ACB = angle ECD (vertically opposite angle)

By ASA

⇔

BC = CD (By CPCT)

Hence proved .